Fekete-szegö Inequalities for Certain Subclasses of Starlike and Convex Functions of Complex Order Associated with Quasi-subordination

نویسنده

  • N. MAGESH
چکیده

In this paper, we find Fekete-Szegö bounds for a generalized class M q (γ, φ). Also, we discuss some remarkable results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fekete-Szeg"o problems for analytic functions in the space of logistic sigmoid functions based on quasi-subordination

In this paper, we define new subclasses ${S}^{*}_{q}(alpha,Phi),$ ${M}_{q}(alpha,Phi)$ and ${L}_{q}(alpha,Phi)$ of analytic functions in the space of logistic sigmoid functions based on quasi--subordination and determine the initial coefficient estimates $|a_2|$ and $|a_3|$ and also determine the relevant connection to the classical Fekete--Szeg"o inequalities. Further, we discuss the improved ...

متن کامل

Fekete–szegö Problem for Certain Subclasses of Analytic Functions

Abstract. In this present investigation, authors introduce certain subclasses of starlike and convex functions of complex order b, using a linear multiplier differential operator D λ,μf(z). In this paper, for these classes the Fekete–Szegö problem is completely solved. Various new special cases of our results are also pointed out.

متن کامل

On some properties of certain subclasses of analytic functions defined by using the subordination principle

In this paper, we introduce some new subclasses of analytic functions related to starlike, convex, close-to-convex and quasi-convex functions defined by using a generalized operator and the differential subordination principle. Inclusion relationships for these subclasses are established. Moreover, we introduce some integral-preserving properties. Key-Words: Starlike function; Convex function; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017